Symmetric Kronecker Products and Semiclassical Wave Packets
نویسندگان
چکیده
We investigate the iterated Kronecker product of a square matrix with itself and prove an invariance property for symmetric subspaces. This motivates the definition of an iterated symmetric Kronecker product and the derivation of an explicit formula for its action on vectors. We apply our result for describing a linear change in the matrix parametrization of semiclassical wave packets.
منابع مشابه
A Minimal Uncertainty Product for One Dimensional Semiclassical Wave Packets
Although real, normalized Gaussian wave packets minimize the product of position and momentum uncertainties, generic complex normalized Gaussian wave packets do not. We prove they minimize an alternative product of uncertainties that correspond to variables that are phase space rotations of position and momentum.
متن کاملOn Kronecker Products of Characters of the Symmetric Groups with Few Components
Confirming a conjecture made by Bessenrodt and Kleshchev in 1999, we classify all Kronecker products of characters of the symmetric groups with only three or four components. On the way towards this result, we obtain new information about constituents in Kronecker products.
متن کاملN ov 2 00 6 Dynamics of semiclassical Bloch wave - packets
The semiclassical approximation for electron wave-packets in crystals leads to equations which can be derived from a Lagrangian or, under suitable regularity conditions, in a Hamiltonian framework. In the plane, these issues are studied using the method of the coadjoint orbit applied to the “enlarged” Galilei group.
متن کاملOn (almost) Extreme Components in Kronecker Products of Characters of the Symmetric Groups
Using a recursion formula due to Dvir, we obtain information on maximal and almost maximal components in Kronecker products of characters of the symmetric groups. This is applied to confirm a conjecture made by Bessenrodt and Kleshchev in 1999, which classifies all such Kronecker products with only three or four components.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Matrix Analysis Applications
دوره 38 شماره
صفحات -
تاریخ انتشار 2017